Hybrid prototyping by using virtual and
miniature simulation for designing spatial
interactive information systems

Yasuto Nakanishi, Koji Sekiguchi, Takuro Ohmori,
Soh kitahara, and Daisuke Akatsuka

Keio University, Faculty of Environment and Information Studies,
5322 Endo, Fujisawa, Kanagawa, Japan
{naka, t07412ks, ohmori, soh335,dadaa}@sfc.keio.ac. jp
http://cc.unitedfield.net/

Abstract. In this paper, we introduce CityCompiler, an integrated en-
vironment for the iteration-based development of spatial interactive sys-
tems. CityCompiler visualizes interactive systems in a virtual 3D space
by combining the Processing' source code and the 3D model of the real
space, designed with Google SketchUp. A simulation in virtual space en-
ables us to test a spatial layout and a combination of components. In
addition, the system function of smoothly switching between a virtual
sensor and a real sensor realizes hybrid prototyping by means of virtual
simulation and miniature simulation. These features integrate the space
design with the software design and allow the smooth deployment of
spatial interactive information systems into the real world.

Keywords: software design, space design, prototyping, deployment, IDE

1 Introduction

In recent years, the use of large displays in public or commercial spaces has be-
come increasingly popular.These displays are attractive and eye-catching, and
they bring with them embodied and spatial interactions. Some notable examples
of emerging applications of visual displays are sharing large-size visualized data,
smart office applications, digital signage, interactive public art, and interior and
exterior architectural displays. These spatial interactive systems consist of both
software and real-space components. For instance, interactive digital signage
or applications for urban environments mostly use software, cameras, sensors,
projectors, speakers, PCs, and real spaces, such as exhibition rooms and urban
buildings for projection. In order to make these systems work in the right or
effective manner, developers are required to simultaneously configure software
and real-space components. For example, configuring the camera/projection lo-
cation, size, direction, or designing the real space is a significant process.

! http://www.processing.com/

2 Yasuto Nakanishi et.al

Various input and output devices are available for constructing such inter-
active environments, spanning a large design space. The choice of devices deter-
mines modalities, which affect both the nature and the impact of the interactions
of such environments with a system. They are crucial for the usability and ac-
ceptance of the system by its users, and the integration of interaction design
with space design is a topic of considerable interest.

However, in general, after the input and output devices have been decided
and the software for the interactive system has been developed, the problem of
where to physically place these devices arises. In particular, it should be noted
that optical devices such as cameras or displays have a limited field of view,
which needs to be considered. Presently, it is difficult for software developers to
configure such system components before the system is deployed and runs in the
real space. Some developers use low-fidelity techniques, such as paper prototypes
and mental walkthroughs, and others have to wait for a full-scale deployment.
In other words, software developers are unable to properly test the entire system
in the early stages of system development.

To solve these problems, we propose CityCompiler, which enables spatial in-
teractive system developers to create their systems using an iteration-based de-
velopment process, using iterative visualization or trial-and-error. CityCompiler
simulates how an interactive system developed with Processing runs in a 3D vir-
tual world, modeled using Google SketchUp. Simulation in the virtual 3D world
allows not only collaboration between the software developer and the space de-
signer, but also trial-and-error testing when sketching a spatial interactive sys-
tem by choosing input and output devices. The objective of CityCompiler is to
support the interaction design concerning the choice of sensors and actuators
and their placement in the 3D world, including the assessment of their range of
sensitivity and effect such as the visibility of a display.

A
J

Software /
Design ./
Processing

Compile —

C 1@\,?/}1'

Java Monkey-*
Engine | .

Google

Sketch Up Space (-)
L Design

—1
~J

simulation and interactive trial and errors in virtual space deployment in real space

Fig. 1. Overview of CityCompiler.

Hybrid prototyping for spatial interactive information systems 3

SimpleGame Va jMonkeyEngine

[I T] "

:| CityCompiler ‘ Model ‘ ‘ Display ‘ ‘ Projector‘ ‘ Sensor ‘ Sensor !

< '_4_| Manager

‘ Camera ‘ ‘ DistanceSensor‘
DisplayTest i i i

isplay @ D model Class Library of CityCompiler

 —— m PApplet

Fig. 2. Class Diagram for CityCompiler.

2 Hybrid prototyping with CityCompiler

2.1 Sketching and prototyping

CityCompiler is composed of two modules: a Java class library and a 3D viewer.
The 3D viewer is based on the jMonkeyEngine, which is a Java-based 3D game
engine?. These modules are compressed in jar format, which allows developers
to use the prototype with an integrated development environment (IDE), such
as Eclipse or NetBeans. Our Java class library provides several Java classes and
interfaces that support the development of spatial interactive systems, and some
spatial components that work in the virtual spaces are also implemented. Figure
2 shows a part of the CityCompiler class diagram.

— The Model class loads the 3D models saved in the .obj file format created
with 3D modeling tools.

— The Projector class projects the Processing application onto the 3D models.

— The Display class shows the application on the surface.

— The Camera class captures images in the virtual world and transfers them
to any other Java application.

— The DistanceSensor class returns distances to other objects on the basis of
collision detection in the virtual world.

The developer creates a subclass of the CityCompiler class in order to in-
tegrate 3D models, the Processing application, and input/output devices in a
virtual world. These three main elements that the developer creates are as fol-
lows.

(a) Source code as a subclass of the PApplet class for a Processing application
(b) A 3D model for the surrounding environment
(c) Source code based on CityCompiler for integration of the system components

To be more specific, (a) would be installed in (b), and (¢) would be used to
visualize (a), which runs in (b) and supports several trial-and-error tests with
regards to (a). For (c¢), the developer defines a class that is a subclass of the
CityCompiler class, and has several instances of the Display class or Camera
class together with the general Java class library.

2 http://www.jmonkeyengine.org/

4 Yasuto Nakanishi et.al

2.2 Testing layout and combination of components

Once the source code for (a) and the model for (b) are prepared, the devel-
oper then compiles (c). After compiling the source code (c), the 3D viewer is
displayed along with the parameter window, the camera viewer, and the user
application’s window. The parameter window allows the developer to manipu-
late several parameters of the 3D components, such as the position and rotation
during runtime. For example, the developer can use the parameter window to
configure and check the elevation of the virtual cameras with realistic heights,
such as 180 cm or 120 cm. This allows the developer to simultaneously com-
pare the layout of actuators from multiple viewpoints, such as their display or
projector.

After carrying out the above-mentioned processes, the developer can return
to the process of coding the source (a) or (c), or both, or designing the 3D models
(b), which happens in the case of iteration.

2.3 Switching virtual devices and real devices

In most cases, the space required for developing and testing these types of sys-
tems and the space required for deploying them are different. It is impossible to
reliably prepare specific visual, spatial, and sensory contexts for the final deploy-
ment. Thus, when deploying a system into a real space, unexpected situations
often arise, and parameters of the software logic must be adjusted in order to
handle inputs from sensors. In some cases, the logic itself is even revised on the
site, although such cases should be avoided as much as possible; the visualized
simulation in our CityCompiler will make the software logic robust and flexible.
In particular, we suppose that operating a system within both a virtual space
and miniature space and comparing the corresponding source code will help de-
velopers to handle the parameters and revise codes. Obtaining different inputs
from a number of sources will allow for further development. In addition, com-
paring operations in a virtual space and miniature space will aid the successful
installation of a system in real space.

In CityCompiler, a SensorManager class is implemented for managing input
devices that allow for smooth switching operations in virtual, miniature, and
the real space. This class tries to gain access to a real sensor connected to the
PC and selects a real sensor or a virtual sensor as the data source. For example,
when a USB camera is detected, real-world images are captured and are sent to
the application, otherwise, virtual-world images are captured and are sent by the
system. Our current implementation can use both USB cameras and Phidgets®
for USB sensing and control, and these devices are available as real sensors
and virtual sensors. Switching virtual sensors with real sensors, and adding the
number of various virtual sensors also supports the design decision of choosing
between available sensors and actuators.

Figure 3 shows a system deployed into the real space after carrying out
repeated simulations both in the virtual space and in the miniature space. The

3 http://www.phidgets.com/

Hybrid prototyping for spatial interactive information systems 5

simulation in virtual space simulation in miniature space deployment into real space

Fig. 3. Deployment into real space after carrying out repeated simulations both in the
virtual space and in the miniature space.

system comprises two distance measuring sensor units connected to a Phidgets
board and a projector. It counts the number of visitors at the entrance of a room,
and displays the results with motion graphics. First, we developed a system that
works in the virtual space and arranged virtual sensors and a virtual projector
in a model of our room. Next, we ran it in a miniature space made of white
styrofoam with real sensors and a mini-projector. In the virtual space, we can
arrange any numbers of projectors in any location, and it is easy to arrange them
horizontally. However, in the miniature space, such an ideal placement is difficult.
Therefore, in the Processing application, we added a function to change the size,
angle, and location of the counted number. We also ran the distance sensors
in the miniature space by using a finger to represent one person and moving
it around. However this did not work as well as in the virtual space, because
the values of parameters for sensing people were different. Thus, a function was
added to change the thresholds of the sensing logic during runtime.

Figure 4 shows a system that displays several photos those include location
information on a map. We planned to exhibit it with a screen set to the window
of our room, which faces the road. First, we developed the processing application,
and arranged a virtual projector in the virtual model of our room. Next, we ran
it in a miniature space with a mini-projector. The miniature model was made
of white styrofoam, and we used a small piece of cloth as a miniature screen.
Our current system does not calculate the size of the styrofoam and the cloth
automatically, so we calculated the sizes of the parts based on the 3D model
and assembled them. We checked how the system worked by watching a movie
sent from a wireless camera on the head of a doll, and matched the scale of the
miniature to the height of the doll. We found that the size of displayed photos
was too small, and so we added a function that changes the sizes of photos for
the whole application during runtime. Next, we noticed that the brightness of
both the room and the road were the same in the miniature space, although
the room was bright and the road was dark at night. Therefore, we added a
white LED in the miniature room to introduce such a brightness gap. We also
found that the brightness difference between the room and the road changed the

6 Yasuto Nakanishi et.al

appearance of the photos. Thus, we added a function to adjust the brightness of
the whole application.

.—‘ ~

=

mini- prolector white LED normal projector

|
K i aimage from a wireless camera
put on the head of the LEGO doll.

simulation in virtual space simulation in miniature space deployment into real space

Fig. 4. Another case of hybrid prototyping.

In these two cases, we obtained the required parameters and the revised
points of codes by carrying out the simulation in the miniature space. Such
improvements make the system more robust and flexible, and will ensure that
the system is smoothly deployed in the real world.

We call this hybrid prototyping, and it is a process that can be used to
integrate a space design with a software design. In order to deploy devices that
match the simulation, we have to implement virtual devices that have the same
specifications as the real devices. However, it is difficult to make devices the
same as they are in the miniature space. In the above-mentioned cases, the
differences between the virtual simulation and the miniature simulation helped
us to discover parameters and brought about spiral design cycles. Running the
code in several different spaces, and with different devices helps to evolve both
the software and the spatial arrangement of devices, which is a benefit of hybrid
prototyping. From this viewpoint, it might not necessarily be good that our
system helps to automatically form an exact miniature model with a 3D printer.

There are limitations in hybrid prototyping. For example, it cannot tell all
the necessary parameters, even if we repeat virtual and miniature simulations,
and we might find further problems in the final deployment. However, updating
the source code using hybrid prototyping would allow the flexibility to handle
new problems. A further limitation is that it is time-consuming, expensive, and
complicated to arrange several displays or cameras in a miniature space. In this
case, it is more realistic to use a virtual simulation and a partial miniature
simulation concurrently.

3 Related works

There have been many prototyping tools for various domains. Topiary is a tool for
prototyping location-enhanced applications, and enables iteration on designs by
using a map that demonstrates scenarios composed of interaction sequences|8].
Papier-Maché is a toolkit for building tangible user interfaces using computer

Hybrid prototyping for spatial interactive information systems 7

vision, etc., and introduces a high level event model[5]. Both these systems and
our system aim to make it easy to prototype, evaluate and iterate on augmented
environments. Incorporating the functions of Topiary and Papier-Maché will
makes our system a better tool. Singh et al. proposed the use of immersive video
as a means of rapid prototyping and an evaluation tool for mobile and ambient
applications[6]. This approach uses immersive video with surround sound as a
simulated infrastructure to create a realistic simulation of a ubiquitous envi-
ronment for software design. The objective of CityCompiler is also to simulate
for a ubiquitous computing environment. However, it aims at having both vir-
tual and miniature simulations rather than creating just one realistic simulation.
UbiREALI3] and eHomeSimulater[1] are simulators used for developing and test-
ing devices that run on a smart home, and their main aim is developing hardware
or software. CityCompiler also simulates a smart environment, and supports not
only indoor smart space environments, but also outdoor systems, such as urban
areas. The objective of CityCompiler is to integrate software design and spatial
design with iteration-based development. CityCompiler places great emphasis on
iteration-based development, rather than accurate simulation. This is the reason
why we selected Processing and SketchUp.

Firefly is a set of software tools that bridge the gap between 3D modeling
software, micro-controllers and the internet?. It also allows near real-time data
flow between virtual and model spaces, and will read /write data to/from internet
feeds or sensors. However, it changes shapes made by parametric and algorithmic
design, and does not target sound, video, graphics, or animation, which Process-
ing and CityCompiler do. Nakanishi et al. proposed two multiagent-based par-
ticipatory simulation methods for a large-scale socially embedded system[4]. One
involves participatory simulation, in which scenario-guided agents and human-
controlled avatars coexist in a shared virtual space and jointly perform simula-
tions. The other involves an augmented experiment, in which an experiment
is performed in a real space by human subjects, enhanced by a large scale
multi-agent simulation. They can be Cross-Reality[2] or Augmented-Virtuality
to combine a virtual space and a model space and to combine people with multi-
agents. Hybrid prototyping as Cross-Reality or Augmented-Virtuality would be
a promising way to design and develop spatial information systems or responsive
augmented environments.

Yamashita et al. demonstrated that seating arrangements exert an impor-
tant influence on video-mediated conversations; different seating arrangements
yield differences in speech patterns, senses of unity, and quality of solutions[7].
The display layout allowed the participants to change their body orientations,
head movements, and seating arrangements, creating different patterns of video-
mediated conversations. This means that both the software design and the space
design, along with the orientation and disposition of input/output devices influ-
ences the way people interact. The integration of interaction design with space
design, and in particular, spatiality, is a topic of considerable interest.

4 http://www.fireflyexperiments.com/

8 Yasuto Nakanishi et.al

4 Conclusion and Future work

One problem in developing pervasive computing applications is the simulation
of the required input/output devices in the environment in which they are to be
deployed. In this paper, we introduced CityCompiler, an integrated environment
for the iteration-based development of spatial interactive systems. CityCompiler
visualizes an interactive system in a virtual 3D space by combining the Process-
ing source code and a 3D model designed with SketchUp. In the Web interface
design, graphic design is integrated with software design. In the case of the spa-
tial information systems design, space design should be integrated with software
design in the same way, and simulations using CityCompiler are studied to real-
ize the integration. CityCompiler enables the developer to carry out interactive
trial-and-error tests with the testing layout and a combination of components.
Here, the developer uses both the virtual space and the miniature space before
the final deployment into the real space. The simulation allows the software de-
signer, space designer, or interaction designer to browse the intended activities,
and to collaboratively highlight their context in the urban environment by con-
sidering spatial regions and the installation of input and output devices. In this
paper, we introduced only two of our processes employing hybrid prototyping.
In future, we will investigate the effectiveness of hybrid prototyping by analyz-
ing more cases. We believe hybrid prototyping would be effective not only for
deploying a system into the real world but also for designing a system with a
new concept. We will also use both virtual and miniature simulations to come up
with an idea and investigate the advantages and disadvantages of each method.

Acknowledgments. This research is supported by the JST PRESTO program.

References

1. Armac, I. and Retkowitz, D. Simulation of Smart Environments. Proceedings of
the IEEE International Conference on Pervasive Services 2007, pp. 257-266.

2. Lifton, J. , et. al. Metaphor and Manifestation - Cross Reality with Ubiquitous
Sensor/Actuator Networks. IEEE Pervasive Computing, vol. 8, no. 3, pp. 24-33.

3. Nishikawa, H., et. al. UbiREAL: Realistic Smartspace Simulator for Systematic
Testing. Proceedings of UbiComp2006, pp.459-476.

4. Nakanishi, H., Ishida, T and Koizumi, S. Virtual Cities for Simulating Smart Urban
Public Spaces. Handbook of Research on Urban Informatics: The Practice and
Promise of the Real-Time City, IGI Global, pp.256-268.

5. Scott R. , et. al. Papier-Mch: Toolkit Support for Tangible Input. CHI Letters,
Human Factors in Computing Systems: CHI2004. 6(1).

6. Singh, P.; et. al. Immersive video as a rapid prototyping and evaluation tool for
mobile and ambient applications. Proceedings of Mobile HCI 06, pp.264-264.

7. Yamashita, Y., et.al. Impact of Seating Positions on Group Video Communication.
Proceedings of CSCW’08, pp. 177-186.

8. Yang Li, et. al. Topiary: a tool for prototyping location-enhanced applications.
Proceedings of the 17th annual ACM symposium on User interface software and
technology (UIST ’04), pp. 217-226.

